A sufficient and necessary condition for metrization of a de morgan algebra of uniformity 德摩根一致代数可度量化的一个充要条件
De morgan ' s law 德摩根律
The main conclusions are as follows . firstly , among operations of fuzzy relations , the inverse does not change any transitivity at all and the complement changes some transitivity properties whereas the operations union and intersection fail to preserve most transitivity properties . secondly , we carry out a detailed investigation into the relationships of t - transitivity , negative s - transitivity , r - s - semitransitivity and t - s - ferrers properties under some conditions , such as completeness , strong de morgan triple , positive / - norm etc . , and have some expected conclusions 其研究内容与结果归纳如下:首先,通过对模糊关系运算的传递性讨论,我们得到,若一个模糊关系具有某种传递性,则其逆关系不改变其传递性性质,余关系仅改变一些第一类传递性性质,不改变第二类传递性性质;若两个模糊关系具有某种传递性,它们的模并、模交运算不保持大多数传递性性质。